How Dynamic Complexity Disrupts Business Operations

Successful risk determination and mitigation is dependent on how well we understand and account for dynamic complexity, its evolution, and the amount of time before the system will hit the singularity (singularities) through the intensification of stress on the dependencies and intertwined structures forming the system. In this blog post, we provide an example of a client case where dynamic complexity played a key role in terms of resource consumption, time to deliver and volume to deliver. It illustrates how the predictive emulation provided by X-Act OBC Platform can be used to isolate the evolving impact of dynamic complexity and calculate risk as an impact on system performance, cost, scalability and dependability.

Solving Blockchain Distributed Transaction Challenges

We have developed an algorithm that aggregates multiple domain specific blockchains to form a purpose-oriented blockchain. Tested under a variety of cases to prove its applicability, the patented algorithm complements the blockchain protocol to provide a solution for multi-party transaction processes using multiple shared blockchains.

Modeling Economic Dynamics

Traditional financial risk management methods were formulated in an analogy with the early foundational principles of thermodynamics. However, traditional economic models are incomplete models of reality because economic systems are not inclined to attain equilibrium states unless we are talking about very short windows of time (similar to meteorological or most nuclear or gravitational systems).

Blockchain: Navigating the Disruption

After years of theoretical debates and abstract use cases, it is no longer a question of if blockchain will cause market disruption, but rather when and how widely the impact will be felt. Now is the time to remove any outstanding doubts about blockchain applicability and strategically manage the business and operational risks that inevitably come with innovation.

Understanding a System through Deconstruction

A system is composed of components, objects, or members—each having specific properties that characterize its behavior. All members interact, impact, serve and receive from other members. Depending on the intensity of such relations and their configuration, the overall system will expose behavior patterns and characteristics.